
Event Detection in Complex Environments: An Effective and Efficient
Machine-Learning-Based Framework

Alfredo Cuzzocrea
DIA Dept., University of Trieste, Italy

alfredo.cuzzocrea@dia.units.it

Enzo Mumolo
DIA Dept., University of Trieste, Italy

mumolo@units.it

Abstract

In this paper we describe a falls detection and classifica-
tion algorithm for discriminating falls from daily life activ-
ities using a MEMS accelerometer. The algorithm is based
on a shallow Neural Network with three hidden layers, used
as fall/non fally classifier, trained with daily life activities
features and fall features. The novelty of this algorithm is
that synthetic falls are generated as multivariate random
Gaussian features, so only real daily life features must be
collected during some day of normal living. Moreover, the
features related to synthetic fall events are generated as
complement of normal features. First of all, the features ac-
quired during daily life are clustered by Principal Compo-
nent Analysis and no Fall activities shall be recorded. The
complement set of the normal features is found and used
as a mask for Monte Carlo generation of synthetic fall. The
two feature sets, namely the features recorded from daily life
activities and those artificially generated are used to train
the Neural Network. This approach is suitable for a prac-
tical utilization of a Neural Network based fall detection
characterized by high Recall-Precision rate.

1 Introduction

The detection of falls of the elderly and people with
deseases like epilepsy or Parkinson or simple people with
motor difficulties, is today a problem of great public inter-
est. This generated a wide range of research and led to the
development of various falls detection and tele-monitoring
systems to allow prompt intervention when a fall occours.
Studies in the past years have shown that 1/3 of Senior citi-
zens over age 65 ([25]) are often victims of undetected falls
and most of their injuries are due to a lack of intervention.
Generally speaking the classification between daily life ac-
tivities and falls is a difficult task because many daily life
activities look like fall (for example running, sitting in a car
or lying in bed) and many falls may look like daily life ac-
tivities. All the types of errors of these systems are of great

importance. In case of False Positive error, users are not
motivated to use the falls detection system because in many
normal life activities are wrongly detected as falls. In those
cases, the operator soon gets tired of the false alarms. On
the other hand, in case of False Negatives errors it happens
that the system leads to lack of interventions in case of fall.
Of course this situation is followed by problems of serious
injury and also of mortality.

Generally speaking, while it is quite simple to gather ac-
celerometer data during Normal Daily Living (Daily Life
Activities or DLA), it is very difficult if not impossible to
collect data during Falls, so the question is: how can the
false positive rate be reduced if enough fall data is not avail-
able? The answer to this question is that we produce syn-
thetic fall data starting from data collected during normal
daily living.

Our approach reduces the amount of False Positives
compared to threshold based systems by performing exten-
sive training of a neural network if large quantities of fea-
tures are gathered during normal life activities.

In the last decade, there has been a great deal of research
that has examined the use of inertial sensors such as ac-
celerometers and/or gyroscopes to realize systems for au-
tomatic detection of falls. The goal of these systems is to
detect the falls of patients who have any difficulty in walk-
ing to quickly alert the operators who provide a suitable as-
sistance. The characteristics these systems must have are
on one side low cost, consumption and size, and on the
other side high performance. While the first characteristics
are always better met, the performance is still unsatisfac-
tory. Typically, performance is measured in false positives
and false negatives. False positives, if excessive, could de-
motivate the use of these systems because the recipient of a
fall warning could get tired of it. Clearly, false negatives are
the most dangerous for the patient’s health because they cor-
respond to missed falls. Normally these errors are measured
by Sensitivity (ability to detect actual falls) and Specificity
(ability to avoid false positives) or equivalently Recall and
Precision. From the literature, the existing technology for
falls detection systems can be roughly classified into three

DOI reference number: 10.18293/DMSVIVA2019-023

categories.

• With wearable sensors: These systems use a triaxial
accelerometer or gyroscope or a combination of both
to estimate the posture of the subject’s body. The sen-
sors are placed in different places, such as the waist,
the thigh, the wrist, the shoes. Many systems use the
smart-phones inertial sensors.

• With environmental sensors: The environmental sen-
sors are nothing more than sensors positioned around
the subject. Floor sensors such as pressure sensors
on the mat, microphones, infrared sensors, microwave
motion detectors are used to detect the fall. The clas-
sifiers of neural networks are used to classify daily ac-
tivities.

• With image processing: In such methods, a camera is
used to monitor body postures. Falls are detected us-
ing various image processing techniques such as pat-
tern matching, posture recognition, skeleton extrac-
tion, background subtraction, optical flow processing,
etc.

A fall can be described as the rapid change from standing
or sitting towards an elongated position in earth or almost
elongated [24]. This definition has been used in many stud-
ies. The paper is organized as follows. In Section 2 we
describe the state of the art. In Section 3 we provide the
main features of the accelerometer. In Section 4 we intro-
duce preliminary definitions of our work. In Section 5 we
describe our main approach. In Section 6 we provide the
proposed metrics for performance evaluation. In Section 7
we provide the experimental evaluation and assessment of
our proposed framework. Finally, in Section 8 we discuss
concluding remarks and future work of our research. A pre-
liminary version of this paper appears in the short paper [5].

2 Previous Work

The algorithms used in systems with wearable sensors
can be divided into approaches that use thresholds-based
heuristics and approaches that use machine learning tools
[23]. The latter may be k-Nearest Neighbor (kNN), neural
networks, hidden Markov models, or the two classes clas-
sification schemes based on the Support Vector Machines
(SVM) classifiers. In all cases, however, it is important to
have both falls and daily life activity features. In the case
that the approaches are based on thresholds, the availability
of both types of data is important to find optimal thresholds,
while in the other case the data are important for correctly
training the machine learning algorithms.

The thresholds-based heuristics approaches are methods
that use thresholds and appropriate functions derived from

inertial parameters. The simplest approach to detecting a
fall could be to detect the ground position of the person,
by means of a horizontal inclination detection sensor. This
method is suitable for monitoring “isolated subjects” but
less suitable for the detection of falls of an elderly person
in his home environment as the hours of sleep are not regu-
lar. Therefore this method provides many “false positives”.
A complementary solution is to detect the person lying on
the floor, using floor tiles equipped with sensors. But when
the falls do not end on earth, or if the floor does not have
these sensors, obviously they are not detectable. When it
falls, the person often hits the ground or an obstacle. The
“shock impact” causes an intense inversion of the polarity
of the acceleration vector in the direction of the trajectory,
which can be detected with an accelerometer or a shock
detector, which is actually a threshold accelerometer. Al-
though most of the falls occur in the “front” plane (forward
or backward), the direction of the trajectory of fall and is
obviously variable from one fall to another. Also the posi-
tion of the sensor on the body relative to the point of impact
modifies the signal recorded at the moment of shock. The
lack of movement can be used to detect the fall as, after the
“serious” fall, in which the person can be seriously injured,
they often remain immobilized in one position. A motion /
vibration sensor, positioned on the body (e.g., wrist or an-
kle), can be used or, again more simply, infrared sensors
of presence disseminated in the home. The choice of la-
tency time (the delay before the decision) that should be
long enough to reduce “false positives”, which translates
into a longer delay before intervention, represents a critical
problem for these approaches. As discussed earlier, during
a fall there is a temporary “fall free” period, during which
the vertical speed increases linearly over time due to grav-
itational acceleration. If you measure the vertical speed of
the normal movements of the person (getting up, lowering,
sitting down), you can discriminate these speeds from what
you do during the fall, which would exceed an appropriate
threshold. The intrinsic of analytical methods lies in the
choice of this threshold, which if too low causes “false pos-
itives” and if too high causes “false negatives”. Also this
threshold differs from subject to subject. Image processing
of video signals can also be used to detect one fall identi-
fying the lying posture using analysis of the visual scene or
detecting brusque movements using the revelation of move-
ments with respect to the background. The latter method
usually consists in subtracting successive images to keep
only the variations, which are then sorted according to their
direction and / or their width. While these techniques are
well established in controlled environments (e.g., labora-
tory), they must be modified in environments uncontrolled
where parameters such as lighting or framing can be arbi-
trary. Furthermore, if the subject moves in a 3-dimensional
space, it may need more complex techniques, namely the

use of 2 cameras (“VisionStereo”). These image techniques
are absolutely feasible at present, both technically and eco-
nomically, thanks to the presence on the market of low cost
cameras (web cam), with the possibility to transmit images
in wireless mode over short distances and availability of ap-
propriate processing algorithms. However the acceptance
of these technologies for images poses big problems of pri-
vacy, as it requires the positioning of video cameras in the
living space of the person, and in particular in the bedroom
and the bathroom.

An alternative to heuristics approaches, machine learn-
ing methods can be used to detect falls. These methods
are based on the data acquired on the real working system,
used in a preliminary training phase. “Supervised” or “un-
supervised” classification algorithms can be used. In case
of classification algorithms with “supervised” learning, the
person wearing the device performs a series of voluntary
actions in order to identify the parameters in the normal
cases. In the case of ”unsupervised” learning, it is possible
to record the movements of the person, within a few hours
or several days, and then perform a statistical analysis of
the measured speed. These approaches to developing fall
detection algorithms are based on observing of the data (the
training period) and then on the classification. The choice
of classification algorithms is very broad. If you use a su-
pervised method, a simpler choice is to train a neural net-
work, which will then be used to automatically classify the
signal. Only the situations encountered during training can
be recognized, all others can be shuffled into a class called
”others” if the algorithm ” is ” unsupervised ”, falls can be
isolated if the training period is much longer than the fall
event. Furthermore, it is likely that the first event fall is not
detected since its class is still unknown before its premiere
appearance.

Regarding the thresholds-based heuristics approaches,
Bourke et al. [2] uses signals from triaxial accelerome-
ters mounted on the trunk and the thigh to distinguish falls
from the Activities of Daily Living (ADLs). They propose a
higher fall threshold (UFT) and a lower fall threshold (LFT)
in an attempt to optimize the balance of false positives and
false negatives. Likewise, Kangas et al. [13] attached a
triaxial accelerometer to the waist, wrist and head of volun-
teers who performed simulated drops and ADLs in labora-
tory. Their algorithms considered the phases of pre-impact,
impact and post-impact of the fall, separately and in com-
bination, and achieved up to 100% of specificity and sensi-
tivity of 95%, using a single sensor mounted at the waist.
However, this algorithm has not been tested in real envi-
ronments. The only study that examined its accuracy in
the real world was conducted by Bagala et al. [6], which
evaluated fall detection methods (including the Bourke and
Kangas algorithms described above) using data from real
falls, achieving much better results. In laboratory settings,

the development of improved algorithms for automatic fall
detection in the elderly requires an understanding of real-
life fallout scenarios in older adults and the integration of
such information into the design of laboratory experiments.
The common fall scenarios are often absent in the major-
ity, if not in all, of the previous laboratory experiments of
fall, and the consequent discrepancy in the sensor data is,
perhaps, the main cause of the lack of accuracy of the fall
detection algorithms, when tested on real scenarios. In [9]
a system is described that uses a tri-axial accelerometer and
gyroscope. The detection algorithm uses three thresholds:
one to recognize pre-fall situations, one to detect the max-
imum of the acceleration vector module and one to detect
the maximum angular velocity. The algorithm described in
[10] also uses three thresholds, one for the local minima
of the acceleration module and two for the local maxima
of the acceleration module and the angular velocity mod-
ule. Systems based on machine learning algorithms use
classifiers that are trained with both ADL and falls data.
However, in a realistic context, due to the lack of sufficient
availability of falls data and the lack of knowledge and un-
derstanding of what could be the falls, approaches based
on the detection of anomalies and classification of a sin-
gle class can be used. These techniques can not identify
falls directly because fall data is not available for classifier
training. However, they can identify falls indirectly by clas-
sifying them as abnormal activities. In these approaches,
therefore, abnormal activities are classified as deviations
from normal behavior. Naturally, the concept of normal
activities must be clearly defined to identify abnormal ac-
tivities. Moreover, even if the data of normal activities are
not sufficient, then these techniques can produce excessive
false positives. Recent research projects [4], [22], [16] show
that falls can be identified without actually acquiring them.
As evidenced by Klenk et al. [11], simulated falls differ
significantly from real-world falls. Thus, having simulated
falls in the training data set could lead to achieve classifiers
that show different behaviors with real-world falls However,
other authors such as Zhou and others [21] have presented
a method to detect falls using transitions between activities
to model falls. Zhou and others trained supervised classi-
fiers using the normal activities collected by a mobile de-
vice, then used transitions between these activities to train
a One-class Support Vector Machine (OSVM) and showed
that it performs better than an OSVM trained only with ac-
tivities normal. Micucci et al. [22] evaluates methods of de-
tecting falls that do not require dropping data during train-
ing on different data sets collected using the smart-phone
accelerometer. Their results show that in most cases, the
One Class k-Nearest approach Neighbor classifier OCNN
behaves better or equivalently to supervised SVM and KNN
classifiers that require both types of data, i.e. data for nor-
mal and abnormal activities. In other words, Micucci et al.

use the one-class k-Nearest Neighbor (kNN) classifier and
the one-class SVM classifier. These classifiers have been
trained only with ADL and FALL instances. If the anomaly
score is higher than a given threshold, the new instance is
classified as an anomaly / fall, otherwise is classified as an
ADL. Micucci et al compares the anomaly detectors with a
two classes kNN and a two-classes radial basis SVM. These
classifiers have been trained and tested with both instances
of ADL and FALL. This is the case that we are looking for
in a real scenario. The main contribution of [22] is the dis-
covery that to design an effective method of detection of
falls, it is not necessary to acquire data of falls but it is suf-
ficient to classify the test data as anomalous. As for the
HMM models, the traditional way to detect unseen abnor-
mal activities appears as a model of normal activity using
an HMM, appears the likelihood of a test sequence with
the trained models and if it is below a pre-defined thresh-
old then identify it as an anomalous activity [20]. Another
common method to detect anomalous activities is to model
the normal activities by a common HMM instead of mod-
eling them separately. In [17] two HMM algorithms are
presented that are normal HMM, in which the system noise
covariance of the normal dynamics is used to determine the
region with highest likelihood which are far from normal-
ity based on which events can be classified as ’not normal’.
Their results show high detection rates for falls on two ac-
tivity recognition data sets, albeit with an increase in the
number of false alarms. In [16], Khan et al. experimentally
show that this approach can give better results than super-
vised classification with limited fall data. When the number
of fall data increases, the performance of supervised clas-
sifiers improves, but falling data collection can take a long
time.

3 Accelerometer Features

The output of the MEMs accelerometer are the three
component of the acceleration vector according to the three
axis x, y, z, namely ax, ay, az , each of them related to
the current time instant. From this signal, many features
are extracted, see for example [14, 27]. We first com-
pute the modulus of the acceleration vector, namely Acc =√
a2x + a2y + a2z . Let us give a look to Figure 1 which is

the time evolution of Acc for a typical fall. In this case,
it is a Fall backward while trying to sit on a chair, taken
from Mobifall v.2. It is worth noting that the overall time
frame is the typical fall time. Here we choose the follow-
ing measures: the maximum value of the modulus, labeled
as Peak in Figure 1, the length between the two arrows, la-
beled as Base, and the modulus of the slopes of the three
components within the signal frame. The slope is computed
as follows. Calling ti1, t

i
1+N the first and last time instant of

Peak

Base

Peak1

Figure 1. Features Extracted from the Graph of
the Module

the N samples i-th frame, let us consider the values:

maxax
= max{ax(ti1), . . . , ax(ti1+N},

minax
= min{ax(ti1), . . . , ax(ti1+N)},

maxay
= max{ay(ti1), . . . , ay(ti1+N},

minay = min{ay(ti1), . . . , ay(ti1+N)},
maxaz = max{az(ti1), . . . , az(ti1+N)}, minaz =
min{az(ti1), . . . , az(ti1+N)}.

Then, in the interval ti1, t
i
1+N , the slopes of the three

components are: slopex = maxax − minax, slopey =
maxay−minay , slopez = maxaz −minaz . The modulus
of the slope component is

Slope =
√
slope2x + slope2y + slope2z (1)

Another feature we use is the Ratio of the Peak over Base,
as described in (2)

Ratio =
Peak

Base
(2)

These features have been chosen because they require very
low computation, and so they can be used also on embedded
processors with very little computational power.

4 Preliminary Definitions

We now make some preliminary definition useful in Sec-
tion 5. Assume we use N features describing Falls and
ADL. Then, consider the following definitions.

Definition 1 The Features Space (FsS) is an hyper-cuboid
with 2N vertices and 2 ·N sides where all the original fea-
tures points lie.

Calling max(featurei), and min(featurei) respectively
the maximum and minimum values the i − th feature can
reach in the current case, the length of the first side of
the hypercuboid is max(feature1) − min(feature1),
of the second side is max(feature2) − min(feature2)
and so forth. The two vertices V1 and V2 with re-
spectively the minimum and maximum Euclidean
distance from the origin have coordinates V1 =
(min(feature1),min(feature2), . . . ,min(featureN))
and V2 = (max(feature1),max(feature2), ldots,max(featureN))
respectively. Of course, if we have only two features, FsS
is a rectangle and if we have three features, FsS is a 3D
cuboid.

Definition 2 DLAS ∈ FsF is a set whose elements are
vectors of features collected in one or more days of Daily
Living Activities (DLA).

Definition 3 FAS ∈ FsF is a set whose elements are vec-
tors of features collected during Fall Events.

In Figure (2) we report an example of FsF , DLAS,
FAS and vertices V1, V2 for two and three features respec-
tively.

Definition 4 SynFS ∈ FsF is a set whose elements are
features representing Synthetic Falls, and CSFS is its Car-
dinality, i.e. the number of its elements. The contours of
such sets will be used as Masks in Monte Carlo synthetic
generation of falls.

As stated before, our assumption is that SynFS can be
viewed approximately as a complement to ADLS, pro-
vided that certain conditions are verified. SynFS is repre-
sented by anN -dimensional sphere with center in V2, which
is the vertices of FsS most distant from the origin. The
radius of SFS, initially equal to zero, is found with an it-
erative approach which increase its value until the desired
number of elements of DALS are included in it. In other
words, SynFS is defined as follows:

SynFS = {z|z ∈ ¯DLAS∪{some elements of DLAS}∧CSFS ≤ γ}
(3)

Let us look at the Figure 2 and Figure 3. Here we assume
that only two features are used, so the sets can be drawn as
a 2D plane. The points represented with squares are ADL
elements. The circles’ boundaries are related to some SFS
with different Cardinalities and define two Masks which
will be noted as MaskCardinality.

We recall now the definition of a useful operator from
Binary Morphology [15, 19].

V

V

1

2

V

V1

2

Figure 2. Example of 2D and 3D Features Ob-
tained in Daily Living Activities and Fall Events

Definition 5 The Delation of a given matrix A by a struc-
turing element B, represented with the ⊕ symbol is defined
as follows: A⊕B = {x|B ∩A 6= ∅}.

5 Description of the Approach

Our goal is to generate synthetic falls by using a Monte
Carlo algorithm. In other words N -dimensional random
vectors from Gaussian Distribution are generated and fil-
tered by the Masks described above so that only the vectors
falling within the Mask are retained. In order to reduce the
computational complexity of the Monte Carlo algorithm, bi-
nary operations are performed.

First of all, Principal Component Analysis [1, 12] of
DLAS data is performed to cluster DLA data. To clarify the

Figure 3. Example of Two Synthetic Fall Sets
with Different Cardinality

algorithm description let us assume that only two features
are used. Using the data of Figure 2 by PCA we approxi-
mate the shape of the data with the ellipse depicted in Figure
4. It is worth observing that the major and minor axis of the

Figure 4. Shape of the Data Captured by PCA

ellipse are the first and second components of the data.
The binary operation starts by a binary version of the

PCA ellipse, which is simply a projection of the PCA ellipse
on a 100 × 100 binary matrix. It is worth noting that here
we make use of binary data for complexity reduction. The
ellipse is filled with ones. This is shown in Figure 5, where
the binary matrix corresponding to Figure 4 is depicted. The
set whose elements are the pixels inside the binary ellipse
is called BE for binary ellipse. Then, a mask is generated

Figure 5. PCA Shape as a Binary Matrix

with Morphological Delation using n-dimensional polytope
structuring elements. It is worth noting that we use delation
instead cicles because the shapes are easier to binarize. In
the 2D example we use an octagon. Starting from an oc-
tagon in V2, a rough approximation of the spherical bound-
aries shown in Figure 2 are obtained using the following
iteration: mask = mask ⊕ octagon. Let M be the set of
pixels set to one in the mask. Then we estimate the number
of pixels of the intersection between the mask and the bi-
nary ellipse by performing the set operation Len(M∩BE).
Now we introduce the threshold γ such that the number of
pixels in the intersection between mask and binary ellipse
be ≤ γ. A loop is performed such as:

whileLen(M ∩BE) ≤ γthenM = M ⊕B (4)

where B is an octagon structuring element. In the upper
panel of Figure 6, a sequence of Masks (the black surface)
for different values if γ is reported. The panel at the bottom

Loop 1 Loop 23 Loop 24 Loop 25

Area=0 Area=19 Area=46 Area=75

Figure 6. Portion of the Sequence of Masks for
Increasing Walues of γ

of Figure 6 shows the corresponding result of the set opera-
tion M ∩E. The number of pixels of M ∩E increases until
the area is greater than the threshold γ.

Synthetic falls, finally, are generated as random vec-
tors X = [X1 . . . Xn]

T , where X1 = feature1, X2 =
feature2, . . . , XN = featureN , according to the Gaussian
multidimensional probability distribution N − Gauss re-
ported in (5).

p(x;µ,Σ2) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(X − µ)T Σ−1(X − µ)

)
(5)

In 5 the mean is estimated as

µ = [
max(feature1) +min(feature1)

2
, . . .

. . . ,
max(featureN) +min(featureN)

2
] (6)

so µ ∈ Rn. Morover, in (5) the covariance matrix is an
N × N symmetric matrix. The diagonal elements are the
variances of each feature. It is estimated as follows:

Σ(i, i) =
(max(featurei)−min(featurei)2)

4
. (7)

All the other elements are equal to zero. In Figure 7 we re-
port an example of random generation of features according
to the bi-variate Gaussian distribution.

Figure 7. Example of Random Bi-Variate Gaus-
sian Generation

Finally we evaluate the synthetic fall features as inter-
section of the random bi-variate features with the feature
Space and the binary Mask. The synthetic falls features are
reported in the example shown in Figure 8 where also the
real fall features are reported for a first comparison.

In Figure 9 we recall that the neural network has input
data derived from the sensors. Then we have three hidden
layers and one exit layer. The dimension of this network
allows to perform the network training using usual back-
propagation.

The key point of our approach is the following. The neu-
ral network is trained with three features, namely Ratio,

Figure 8. Example of Synthetic Fall Features

Figure 9. Neural Network Structure Trained
with Real DLA and Synthetic Falls

Base and Peak1 extracted from ADL and falls. The DAL
output of the network is set to zero during daily living fea-
tures and the FALL output is set to one for synthetic falls
features. When a real fall happens, the network should be
able to detect it by looking which output is greater tahn the
other.

It is worth recalling that the problem with training such

neural network classifier is, in practice, we have only real
ADL features and it is not easy to have real falls. To solve
this difficulty, we generate features which are classified as
Falls. In other words, we generate features which are points
in the set that is complement to the set of the DAL set.

6 Metrics for Performance Evaluation

The starting point for measuring the quality of a classifier
is to obtain the rate of false positive (fp), false negative (fn),
true positive (tp) and true negative (tn) from the classifier.
In our case of a falls detector, let us suppose that there is a
fall. If the detector detects it, a tp is measured. If it does
not detect it, we have a fn. For example, on 100 actual fall
events, the detector could have 80 tp and 20fn. If there has
not been a fall, the detector could say that there was a fall
(fp) or that there was no fall (tn). So on 100 non-fall events,
we could have 80 tn and 20 fp.

In other words:

• TP (true positive): This is a situation in which a fall
occurs and the system correctly detects it.

• FN (false negative): In this situation we have the fall
happens, but the device does not announce it.

• TN (true negative): This is the situation in which a fall
does not occur and the system correctly detects that
there has not been a fall.

• FP (false positive): In this situation the fall does not
happen but the device incorrectly announces that it has
detected a fall.

These measures are also called:
tp→ hit fn→ correct rejection
fp→ false alarm
tn→ miss
It is sometimes convenient to measure errors in a more

concise way. The most used measures are:

Precision =
tp

tp+ fp

This parameter measures the following quantity: the pro-
portion of positive responses that have really fallen.

Recall =
tp

tp+ fn

This parameter represents the system’s ability to detect a fall
every time it occurs. The algorithm is good if the recall ap-
proaches 1 because in this case there are no false negatives.
In other words, this parameter measures the proportion of
falls that have been correctly identified.

7 Experimental Results

First we give a look to the data sets used for experiments.
The first is the MobiAct v2.0 data set [7]. MobiAct contains
data of four different types of falls and nine different daily
living activities from a total of 57 subjects with more than
2500 trials. As well as being used to obtain experimental
results, in this paper MobiAct is used as representative data
set in all the Figures.

The second is UMAFall, which contains data from 17
subjects performing 8 different types of ADL and 3 different
types of falls. Sensing point of MobiAct and UMAFall is
the right trouser pocket.

The third data set used for experimental result is the Sis-
Fall [8, 26], selecting data related to the waist sensor point.
It was generated with 38 participants performing repetitions
of 19 ADL and 15 fall types.

We first obtain False Positive, and Negative as well as
True positive and True Negative. All the results reported in
the following are averaged over these data sets. Of course
as usual we try an input signal from the test section of the
data sets and we look if the output is correct or not. These
results are reported in Figure 10 and in Figure 11.

Figure 10. False Positive and False Negative
Obtained with Real ADL and Falls Data

Then we obtain the values of Recall and Precision, re-
ported in Figure 12.

These performances have been compared with the
Bourke algorithm [2], which is three threshold based. To
find the optimum values of the thresholds, we noticed that
the most important threshold is the third one, so we found its
performances at various values of the third threshold. The
results are reported in Figure 13 which shows that the val-

Figure 11. True Positive and True Negative Ob-
tained with Real ADL and Falls Data

Figure 12. Recall and Precision Obtained with
Real ADL and falls Data

ues of Recall/Precision are quite lower than our algorithm.

8 Final Remarks and Future work

Many fall detection systems are based on thresholds ap-
plied on features derived from inertial sensors. In this paper
we report a novel algorithm which is able to achieve high
performance, namely an equal Recall and Precision value
more of 90% and a false error rate in this point less than

Figure 13. Recall and Precision Performances
of the Bourke Algorithm for Various Values of
the Third Threshold

8%. The main feature of this algorithm are that it only re-
quires collecting features in periods of normal daily living
and then, from these features, it estimates features of artifi-
cial falls. The availability of many features which describe
normal and fall events allow to use Machine Learning ap-
proaches which are very powerful classifiers provided that
sufficient amount of data is given. An important aspects of
the described approach is that we use only one type of in-
ertial sensor, namely the accelerometer. Future work will
be focused on the fusion of the described results obtained
with only an accelerometer with other types of inertial sen-
sors, for example a gyroscope or a magnetometer. In this
way many other data could be given to the neural network.
The computation complexity is very low because it needs
only to compute a trained neural network, so it can be per-
formed in real time. Moreover, we used only three features.
It would be interesting to see how much the performance
increase if other features are used, hence leading to a fea-
ture hyperspace as indicated in Section 3. Another possi-
ble direction of research consists in making our algorithm
compliant with emerging features of novel big data systems
(e.g., [18, 28, 3, 29]).

References

[1] H. Abdi and L. J. Williams. Principal component analysis.
WIREs Comput. Stat., 2(4):433–459, July 2010.

[2] A. Bourke and G. Lyons. A threshold-based fall-detection
algorithm using a bi-axial gyroscope sensor. Med Eng Phys.,
30(1):84–90, 2008.

[3] P. Braun, J. J. Cameron, A. Cuzzocrea, F. Jiang, and C. K.
Leung. Effectively and efficiently mining frequent patterns
from dense graph streams on disk. In 18th International
Conference in Knowledge Based and Intelligent Information
and Engineering Systems, KES 2014, Gdynia, Poland, 15-17
September 2014, pages 338–347, 2014.

[4] M. C, I. R, P. I, and C. M. Detecting falls as novelties in ac-
celeration patterns acquired with smartphones. PLoS ONE,
2014.

[5] A. Cuzzocrea, E. Mumolo, and M. Tessarotto. Towards an
effective and efficient machine-learning-based framework
for supporting event detection in complex environments.
In Proceedings of the 43rd IEEE Computer Society Signa-
ture Conference on Computers, Software and Applications,
COMPSAC 2019, Milwaukee, WI, USA, July 15-19, 2019,
2019.

[6] B. F, B. C, C. A, C. L, A. K, H. JM, Z. W, and K. J. Eval-
uation of accelerometer-based fall detection algorithms on
real-world falls. PLoS One, 7(5):1–9, 2012.

[7] V. G., C. C., M. T., P. M., and M. Tsiknakis. The mobiact
dataset: Recognition of activities of daily living using smart-
phones. In International Conference on Information and
Communication Technologies for Ageing Well and e-Health,
pages 143–151, 2016.

[8] S. Gasparrini, E. Cippitelli, S. Spinsante, and E. Gambi. A
depth-based fall detection system using a kinect R© sensor.
Sensors, 14(2):2756–2775, 2014.

[9] H. W. Guo, Y. T. Hsieh, Y. S. Huang, J. C. Chien,
K. Haraikawa, and J. S. Shieh. A threshold-based algorithm
of fall detection using a wearable device with tri-axial ac-
celerometer and gyroscope. In Intelligent Informatics and
Biomedical Sciences (ICIIBMS), 2015 International Confer-
ence on, pages 54–57. IEEE, 2015.

[10] Q. T. Huynh, U. D. Nguyen, L. B. Irazabal, N. Ghassemian,
and B. Q. Tran. Optimization of an accelerometer and
gyroscope-based fall detection algorithm. J. Sensors, 2015.

[11] K. J, B. C, L. F, N. S, M. W, A. W, Z. W, H. JM, van Lum-
mel RC, C. L, and L. U. Comparison of acceleration signals
of simulated and real-world backward falls. Medical Engi-
neering & Physics, pages 368–373, 2011.

[12] T. T. Jolliffe and J. Cadima. Principal component analysis:
A review and recent developments. Philosophical Trans-
actions of The Royal Society A Mathematical Physical and
Engineering Sciences, pages 1–16, 2016.

[13] M. Kangas, A. Konttila, P. Lindgren, I. Winblad, and T. Jms.
Comparison of low-complexity fall detection algorithms for
body attached accelerometers. Gait Posture, 28(2):285–291,
2008.

[14] A. O. KANSIZ, M. A. GUVENSAN, and H. I. TURKMEN.
Selection of time-domain features for fall detection based on
supervised learning. In Proceedings of the World Congress
on Engineering and Computer Science 2013 Vol II, pages
1–6, 2013.

[15] L. R. Kennell, R. W. Ives, and R. M. Gaunt. Binary mor-
phology and local statistics applied to iris segmentation for
recognition. In ICIP, pages 293–296. IEEE, 2006.

[16] S. S. Khan, M. E. Karg, D. Kulic, and J. Hoey. Towards
the detection of unusual temporal events during activities us-
ing hmms. In Proceedings of the 2012 ACM Conference on
Ubiquitous Computing, pages 1075–1084, 2012.

[17] S. S. Khan, M. E. Karg, D. Kulic, and J. Hoey. X-factor
hmms for detecting falls in the absence of fall-specific train-
ing data. In Ambient Assisted Living and Daily Activities
- 6th International Work-Conference, IWAAL 2014, Belfast,
UK, December 2-5, 2014. Proceedings, pages 1–9, 2014.

[18] K. Li, H. Jiang, L. T. Yang, and A. Cuzzocrea, editors. Big
Data - Algorithms, Analytics, and Applications. Chapman
and Hall/CRC, 2015.

[19] S. Z. Li and A. K. Jain, editors. Encyclopedia of Biometrics.
Springer US, 2009.

[20] S. Lühr, S. Venkatesh, G. A. W. West, and H. H. Bui. Ex-
plicit state duration HMM for abnormality detection in se-
quences of human activity. In PRICAI 2004: Trends in Arti-
ficial Intelligence, 8th Pacific Rim International Conference
on Artificial Intelligence, Auckland, New Zealand, August
9-13, 2004, Proceedings, pages 983–984, 2004.

[21] Z. M., W. S., C. Y., C. Z., and Z. Z. An activity transition
based fall detection model on mobile devices. In: Park J.,
Jin Q., Sang-soo Yeo M., Hu B. (eds) Human Centric Tech-
nology and Service in Smart Space. Lecture Notes in Elec-
trical Engineering, vol 182. Springer, Dordrecht, 2012.

[22] D. Micucci, M. Mobilio, P. Napoletano, and F. Tisato. Falls
as anomalies? an experimental evaluation using smartphone
accelerometer data. Journal of Ambient Intelligence and Hu-
manized Computing, pages 87–99, 2017.

[23] V. Mirchevska, M. Lustrek, and M. Gams. Combining do-
main knowledge and machine learning for robust fall detec-
tion. Expert Systems, 31(2):163–175, 2014.

[24] N. Noury, P. Rumeau, A. Bourke, G. Laighin, and J. Lundy.
A proposal for the classification and evaluation of fall detec-
tors. IRBM, 29(6):340 – 349, 2008.

[25] T. Shi, X. Sun, Z. Xia, L. Chen, and J. Liu. Fall detec-
tion algorithm based on triaxial accelerometer and magne-
tometer, vol. 24, no.2, pp157-163, 201. Engineering Letters,
24(2):157–163, 2016.

[26] A. Sucerquia and J. D. Lpez. Sisfall: A fall and movement
dataset. Sensors, pages 1–14, 2016.

[27] S. Wu and Z. Wang. Applying online feature selection for
fall detection. In IEEE International Conference on Imaging
Systems and Techniques (IST), pages 1–5, 2016.

[28] Z. Wu, W. Yin, J. Cao, G. Xu, and A. Cuzzocrea. Com-
munity detection in multi-relational social networks. In Web
Information Systems Engineering - WISE 2013 - 14th Inter-
national Conference, Nanjing, China, October 13-15, 2013,
Proceedings, Part II, pages 43–56, 2013.

[29] C. Yang, J. Liu, C. Hsu, and W. Chou. On improve-
ment of cloud virtual machine availability with virtualiza-
tion fault tolerance mechanism. The Journal of Supercom-
puting, 69(3):1103–1122, 2014.

